News - Ximilar: Visual AI for Business https://www3.ximilar.com/blog/category/news/ VISUAL AI FOR BUSINESS Tue, 24 Sep 2024 13:58:07 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://www.ximilar.com/wp-content/uploads/2024/08/cropped-favicon-ximilar-32x32.png News - Ximilar: Visual AI for Business https://www3.ximilar.com/blog/category/news/ 32 32 We Introduce Plan Overview & Advanced Plan Setup https://www.ximilar.com/blog/new-plan-overview-and-setup/ Tue, 24 Sep 2024 13:58:05 +0000 https://www.ximilar.com/?p=18240 Explore new features in our Ximilar App: streamlined Plan overview & Setup, Credit calculator, and API Credit pack pages.

The post We Introduce Plan Overview & Advanced Plan Setup appeared first on Ximilar: Visual AI for Business.

]]>
We’re excited to introduce new updates to Ximilar App! As a machine learning platform for training and deploying computer vision models, it also lets you manage subscriptions, monitor API credit usage, and purchase credit packs.

These updates aim to improve your experience and streamline plan setup and credit consumption optimization. Here’s a quick rundown of what’s new.

Plan Setup: Simplified Subscription Management

We’ve revamped the subscription page with new features and better functionality. The Plan Setup page now allows you to choose between Free, Business, or Professional plans, customize your monthly credit supply using a slider, and access our new API Credit Consumption Calculator—a handy tool to help you make informed decisions.

Plan setup in Ximilar App.
Plan setup in Ximilar App.

The entire checkout process has been streamlined as well, allowing you to adjust your payment method directly before completing your purchase.

Manage Your Payment Methods and Currencies

You can change the default currency for plan setup and payments in the Settings. To update your payment method, simply access the Stripe Portal from your Plan Overview under “More Actions.” If you prefer a different payment method or have any additional questions, feel free to reach out to us!

Credit Calculator: Estimate & Optimise Your Credit Consumption

One of the most exciting additions to the app is the new Credit Calculator, now available directly within the platform. While this tool was previously featured on our Pricing page, it’s now integrated into the app as well, allowing you to not only estimate your credit needs but also preset your subscription plan directly from the calculator.

Once you’ve adjusted your credits based on projected usage, you can proceed straight to checkout, making the entire process of optimizing and purchasing credits smoother and more efficient.

Credit consumption calculator in Ximilar App.
Credit consumption calculator in Ximilar App.

Plan Overview: A Complete View of Your Plans and Credits

The page Plan Overview gives you a comprehensive view of your active subscription, any past plans, and your pre-paid credit packs. Previously, credit information was limited to your dashboard, but now you have detailed insight into your credit usage and plan history.

Plan overview in Ximilar App.
Plan overview in Ximilar App.

In the Plan Overview, you can view all your current active subscription plans. If you upgrade or downgrade, multiple plans may temporarily appear, as credits from your previous plan remain available until the end of the billing period.

Reports: Detailed Insights into Credit Usage

Our new Reports page enables you to gain deeper insights into your API credit usage. It provides two types of reports: credit consumption by AI solution (e.g., Card Grading) and by individual operation within a solution (e.g., “grade one card” within the Card Grading solution).

Reports in Ximilar App give you detailed insight into your API credit consumption.
Reports in Ximilar App give you detailed insight into your API credit consumption.

Credit Packs: Flexibility to Buy Extra Credits Anytime

API Credit packs act as a safety net for unexpected system loads. Now available on their dedicated page, you can purchase additional API credit packs as needed. You can also compare pricing against higher subscription plans and choose the most cost-effective option. Both your active and used credit packs will be displayed on the Plan Overview page.

API Credit packs page in Ximilar App.
API Credit packs page in Ximilar App.

Invoices: All Your Purchases in One Place

This updated page neatly lists all your invoices, including both subscription payments and one-time credit pack purchases, ensuring that all your financial information is in one place.

Invoices in Ximilar App.

Greater Control & Flexibility For the Users

These updates are designed to provide you with greater control, transparency, and flexibility as you build and deploy visual AI solutions. All of these features are now accessible in your sidebar. Check them out, and feel free to reach out with any questions!

The post We Introduce Plan Overview & Advanced Plan Setup appeared first on Ximilar: Visual AI for Business.

]]>
New AI Solutions for Card & Comic Book Collectors https://www.ximilar.com/blog/new-ai-solutions-for-card-and-comic-book-collectors/ Wed, 18 Sep 2024 12:35:34 +0000 https://www.ximilar.com/?p=18142 Discover the latest AI tools for comic book and trading card identification, including slab label reading and automated metadata extraction.

The post New AI Solutions for Card & Comic Book Collectors appeared first on Ximilar: Visual AI for Business.

]]>
Recognize and Identify Comic Books in Detail With AI

The newest addition to our portfolio of solutions is the Comics Identification (/v2/comics_id). This service is designed to identify comics from images. While it’s still in the early stages, we are actively refining and enhancing its capabilities.

The API detects the largest comic book in an image, and provides key information such as the title, issue number, release date, publisher, origin date, and creator’s name, making it ideal for identifying comic books, magazines, as well as manga.

Comics Identification by Ximilar provides the title, issue number, release date, publisher, origin date, and creator’s name.

This tool is perfect for organizing and cataloging large comic collections, offering accurate identification and automation of metadata extraction. Whether you’re managing a digital archive or cataloging physical collections, the Comics Identification API streamlines the process by quickly delivering essential details. We’re committed to continuously improving this service to meet the evolving needs of comic identification.

Star Wars Unlimited, Digimon, Dragon Ball, and More Can Now Be Recognized by Our System

Our trading card identification system has already been widely used to accurately recognize and provide detailed information on cards from games like Pokémon, Yu-Gi-Oh!, Magic: The Gathering, One Piece, Flesh and Blood, MetaZoo, and Lorcana.

Recently, we’ve expanded the system to include cards from Garbage Pail Kids, Star Wars Unlimited, Digimon, Dragon Ball Super, Weiss Schwarz, and Union Arena. And we’re continually adding new games based on demand. For the full and up-to-date list of recognized games, check out our API documentation.

Ximilar keeps adding new games to the trading card game recognition system. It can easily be deployed via API and controlled in our App.

Detect and Identify Both Trading Cards and Their Slab Labels

The new endpoint slab_grade processes your list of image records to detect and identify cards and slab labels. It utilizes advanced image recognition to return detailed results, including the location of detected items and analyzed features.

Graded slab reading by Ximilar AI.

The Slab Label object provides essential information, such as the company or category (e.g., BECKETT, CGC, PSA, SGC, MANA, ACE, TAG, Other), the card’s grade, and the side of the slab. This endpoint enhances our capability to categorize and assess trading cards with greater precision. In our App, you will find it under Collectibles Recognition: Slab Reading & Identification.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

New Endpoint for Card Centering Analysis With Interactive Demo

Given a single image record, the centering endpoint returns the position of a card and performs centering analysis. You can also get a visualization of grading through the _clean_url_card and _exact_url_card fields.

The _tags field indicates if the card is autographed, its side, and type. Centering information is included in the card field of the record.

The card centering API by Ximilar returns the position of a card and performs centering analysis.

Learn How to Scan and Identify Trading Card Games in Bulk With Ximilar

Our new guide How To Scan And Identify Your Trading Cards With Ximilar AI explains how to use AI to streamline card processing with card scanners. It covers everything from setting up your scanner and running a Python script to analyzing results and integrating them into your website.

Let Us Know What You Think!

And that’s a wrap on our latest updates to the platform! We hope these new features might help your shop, website, or app grow traffic and gain an edge over the competition.

If you have any questions, feedback, or ideas on how you’d like to see the services evolve, we’d love to hear from you. We’re always open to suggestions because your input shapes the future of our platform. Your voice matters!

The post New AI Solutions for Card & Comic Book Collectors appeared first on Ximilar: Visual AI for Business.

]]>
New Solutions & Innovations in Fashion and Home Decor AI https://www.ximilar.com/blog/fashion-and-home-updates-2024/ Wed, 18 Sep 2024 12:09:13 +0000 https://www.ximilar.com/?p=18116 Our latest AI innovations for fashion & home include automated product descriptions, enhanced fashion tagging, and home decor search.

The post New Solutions & Innovations in Fashion and Home Decor AI appeared first on Ximilar: Visual AI for Business.

]]>
Automate Writing of SEO-Friendly Product Titles and Descriptions With Our AI

Our AI-powered Product Description revolutionizes the way you manage your fashion apparel catalogs by fully automating the creation of product titles and descriptions. Instead of spending hours manually tagging and writing descriptions, our AI-driven generator swiftly produces optimized texts, saving you valuable time and effort.

Ximilar automates keyword extraction from your fashion images, enabling you to instantly create SEO-friendly product titles and descriptions, streamlining the inventory listing process.

With the ability to customize style, tonality, format, length, and preferred product tags, you can ensure that each description aligns perfectly with your brand’s voice and SEO needs. This service is designed to streamline your workflow, providing accurate, engaging, and search-friendly descriptions for your entire fashion inventory.

Enhanced Taxonomy for Accessories Product Tagging

We’ve upgraded our taxonomy for accessories tagging. For sunglasses and glasses, you can now get tags for frame types (Frameless, Fully Framed, Half-Framed), materials (Combined, Metal, Plastic & Acetate), and shapes (Aviator, Cat-eye, Geometric, Oval, Rectangle, Vizor/Sport, Wayfarer, Round, Square). Try how it works on your images in our public demo.

Our tags for accessories cover all visual features from materials to patterns or shapes.

Automate Detection & Tagging of Home Decor Images With AI

Our new Home Decor Tagging service streamlines the process of categorizing and managing your home decor product images. It uses advanced recognition technology to automatically assign categories, sub-categories, and tags to each image, making your product catalog more organized. You can customize the tags and choose translations to fit your needs.

Try our interactive home decor detection & tagging demo.

The service also offers flexibility with custom profiles, allowing you to rename tags or add new ones based on your requirements. For pricing details and to see the service in action, check our API documentation or contact our support team for help with custom tagging and translations.

Visual Search for Home Decor: Find Products With Real-Life Photos

With our new Home Decor Search service, customers can use real-life photos to find visually similar items from your furniture and home decor catalogue.

Our tool integrates four key functionalities: home decor detection, product tagging, colour extraction, and visual search. It allows users to upload a photo, which the system analyzes to detect home decor items and match them with similar products from your inventory.

Our Home Decor Search tool suggests similar alternatives from your inventory for each detected product.

To use Home Decor Search, you first sync your database with Ximilar’s cloud collection. This involves processing product images to detect and tag items, and discarding the images immediately after. Once your data is synced, you can perform visual searches by submitting photos and retrieving similar products based on visual and tag similarity.

The API allows for customized searches, such as specifying exact objects of interest or integrating custom profiles to modify tag outputs. For a streamlined experience, Ximilar offers options for automatic synchronization and data mapping, ensuring your product catalog remains up-to-date and accurate.

The post New Solutions & Innovations in Fashion and Home Decor AI appeared first on Ximilar: Visual AI for Business.

]]>
How to Identify Sports Cards With AI https://www.ximilar.com/blog/how-to-identify-sports-cards-with-ai/ Mon, 12 Feb 2024 11:47:38 +0000 https://www.ximilar.com/?p=15155 Introducing sports card recognition API for card collector shops, apps, and websites.

The post How to Identify Sports Cards With AI appeared first on Ximilar: Visual AI for Business.

]]>
We have huge news for the collectors and collectibles marketplaces. Today, we are releasing an AI-powered system able to identify sports cards. It was a massive amount of work for our team, and we believe that our sports card identification API can benefit a lot of local shops, small and large businesses, as well as individual developers who aim to build card recognition apps.

Sports Cards Collecting on The Rise

Collecting sports cards, including hockey cards, has been a popular hobby for many people. Especially during my childhood, I collected hockey cards, as a big fan of the sport. Today, card collecting has evolved into an investment, and many new collectors enter the community solely to buy and sell cards on various marketplaces.

Some traditional baseball rookie cards can have significant value, for example, the estimated price of a vintage Mickey Mantle PSA 10 1952 Topps rookie baseball card is $15 million – $30 million.

Our Existing Solutions for Card Collector Sites & Apps

Last year, we already released several services focused on trading cards:

  • First, we released a Trading Card Game Identifier API. It can identify trading card games (TCGs), such as Pokémon, Magic The Gathering: MTG and Yu-Gi-Oh!, and more. We believe that this system is amongst the fastest, most precise and accurate in the world.

  • Second, we built a Card Grading and fast Card Conditioning API for both sports and trading card games. This service can instantly evaluate each corner, edges, and surface, and check the centring in a card scan, screenshot or photo in a matter of seconds. Each of these features is graded independently, resulting in an overall grade. The outputs can be both values or conditions-based (eBay or TCGPlayer naming). You can test it here.

  • We have also been building custom visual search engines for private collections of trading cards and other collectibles. With this feature, people can visit marketplaces or use their apps to upload card images, and effortlessly search for identical or similar items in their database with a click. Visual search is a standard AI-powered function in major price comparators. If a particular game is not on our list, or if you wish to search within your own collection, list, or portfolio of other collectibles (e.g., coins, stamps, or comic books), we can also create it for you – let us know.

We have been gradually establishing a track record of successful projects in the collectibles field. From the feedback of our customers, we hear that our services are much more precise than the competition. So a couple of months ago, we started building a sports card scanning system as well. It allows users to send the scan to the API, and get back precise identification of the card.

Our API is open to all developers, just sign up to Ximilar App, and you can start building your own great product on top of it!

Test it Now in Live Demo

This solution is already available for testing in our public demo. Try it for free now!

Ximilar AI analyses the sports cards and provides detailed information about them, including links to marketplaces.

The Main Features of Sports Cards

There are several factors determining the value of the card:

  • Rarity & Scarcity: Cards with limited production runs or those featuring star players are often worth more.

  • Condition: Like any collectible item, the condition of a sports card is crucial. Cards in mint or near-mint condition are generally worth more than those with wear and tear.

  • Grade & Grading services: Graded cards (from PSA or Beckett) typically have higher prices in the market.

  • The fame of the player: Names of legends like Michael Jordan or Shohei Ohtani instantly add value to the trading cards in your collection.

  • Autographs, memorabilia, and other features, that add to the card’s rarity.

Each card manufacturer must have legal rights and licensing agreements with the sports league, teams, or athletes. Right now, there are several main producers:

  • Panini – This Italian company is the largest player in the market in terms of licensing agreements and number of releases.

  • Topps – Topps is an American company with a long history. They are now releasing cards from Baseball, Basketball or MMA.

  • Upper Deck – Upper Deck is a company with an exclusive license for hockey cards from the NHL.

  • Futera – Futera focuses mostly on soccer cards.

Example of Upper Deck, Futera, Panini Prizm and Topps Chrome cards.
Example of Upper Deck, Futera, Panini Prizm and Topps Chrome cards.

Dozens of other card manufacturers were acquired by these few players. They add their brands or names as special sets in their releases. For example, the Fleer company was acquired by Upper Deck in 2005 and Donruss was bought by Panini.

Identifying Sports Cards With Artificial Intelligence

When it comes to sports cards, it’s crucial to recognize that the identification challenge is more complex than that of Pokémon or Magic The Gathering cards. While these games present challenges such as identical trading card artworks in multiple sets or different language variants, sports cards pose distinct difficulties in recognition and identification, such as:

  • Amount of data/cards – The companies add a lot of new cards into their portfolio each year. As of the latest date, the total figure exceeds tens of millions of cards.

  • Parallels, variations, and colours – The card can have multiple variants with different colours, borders, various foil effects, patterns, or even materials. More can be read in a great article by getcardbase.com. Look at the following example of the NBA’s LeBron James card, and some of its variants.

LeBron James 2021 Donruss Optic #41 card in several variations of different parallels and colors.
LeBron James 2021 Donruss Optic #41 card in several variations of different parallels and colors.
  • Special cards: Short Print (SP) and Super Short Print (SSP) cards are intentionally produced in smaller quantities than the rest of the particular set. The most common special cards are Rookie cards (RC) that feature a player in their rookie season and that is why they hold sentimental and historical value.

  • Serial numbered cards: A type of trading cards that have a unique serial number printed directly on the card itself.

  • Authentic signature/autograph: These are usually official signature cards, signed by players. To examine the authenticity of the signature, and thus ensure the card’s value, reputable trading card companies may employ card authentication processes.

  • Memorabilia: In the context of trading cards, memorabilia cards are special cards that feature a piece of an athlete’s equipment, such as a patch from a uniform, shoe, or bat. Sports memorabilia are typically more valuable because of their rarity. These cards are also called relic cards.

As you can see, it’s not easy to identify the card and its price and to keep track of all its different variants.

Example: Panini Prizm Football Cards

Take for example the 2022 Panini Prizm Football Cards and the parallel cards. Gold Prizms (10 cards) are worth much more than the Orange Prizms (with 250 cards) because of their scarcity. Upon the release of a card set, the accompanying checklist, presented as a population table, is typically made available. This provides detailed information about the count for each variation.

2022 Panini Prizm Football Cards examples. (Source: beckett.com)
2022 Panini Prizm Football Cards examples. (Source: beckett.com)

Next, for Panini Prizm, there are more than 20 parallel foil patterns like Speckle, Hyper, Diamond, Fast Break/Disco/No Huddle, Flash, Mozaic, Mojo, Pulsar, Shimmer, etc. with all possible combinations of colours such as green, blue, pink, purple, gold, and so on.

These combinations matter because some of them are more rare than others. There are also different names for the foil cards between companies. Topps has chrome Speckle patterns which are almost identical to the Panini Prizm Sparkle pattern.

Lastly, no database contains each picture for every card in the world. This makes visual search extremely hard for cards that have no picture on the internet.

If you feel lost in all the variations and parallels cards, you are not alone.
If you feel lost in all the variations and parallels cards, you are not alone.

Luckily, we developed (and are actively improving) an AI service that is trying to tackle the mentioned problems with sports cards identification. This service is available on click as an open REST API, so anyone can connect to develop and integrate their system with ours. The results are in seconds and it’s one of the fastest services available in the market.

How to Identify Sports Cards Via API?

In general, you can use and connect to the REST API with any programming language like Python or Javascript. Our developer’s documentation will serve you as a guide with many helpful instructions and tips.

To access our API, sign in Ximilar App to get your unique API authentication token. You will find the administration of your services under Collectibles Recognition. Here is an example REST Request via curl:

$ curl https://api.ximilar.com/collectibles/v2/sport_id -H "Content-Type: application/json" -H "Authorization: Token __API_TOKEN__" -d '{
    "records": [
        { "_url": "__PATH_TO_IMAGE_URL__"}
    ], "slab_id": false
}'
The example response when you identify sports cards with Ximilar API.
The example response when you identify sports cards with Ximilar API.

The API response will be as follows:

  • When the system succesfuly indetifies the card, it will return you full identification. You will get a list of features such as the name of the player/person, the name of the set, card number, company, team and features like foil, autograph, colour and more. It is also able to generate URL links for eBay searches so you can check the card values or purchase them directly.
  • If we are not sure about the identification (or we don’t have a specific card in our system) the system will return empty search results. In such case, feel free to ask for support.

How AI Sports Cards Identification Works?

Our identification system uses advanced machine learning models with smart algorithms for post-processing. The system is a complex flow of models that incorporates visual search. We trained the system on a large amount of data, curated by our own annotation team.

First, we identify the location of the card in your photo. Second, we do multiple AI analyses of the card to identify whether it has autograph and more. The third step is to find the card in our collection with visual search (reverse image search). Lastly, we use AI to rerank the results to make them as precise as possible.

What Sports Cards Can Ximilar Identify?

Our sports cards database contains a few million cards. Of course, this is just a small subset of all collectible cards that were produced. Right now we focus on 6 main domains: Baseball cards, Football cards, Basketball cards, Hockey cards, Soccer and MMA, and the list expands based on demand. We continually add more data and improve the system.

We try to track and include new releases every month. If you see that we are missing some cards and you have the collection, let us know. We can agree on adding them to training data and giving you a discount on API requests. Since we want to build the most accurate system for card identification in the world, we are always looking for ways to gather more cards and improve the software’s accuracy.

Who Will Benefit From AI-Powered Sports Cards Identifier?

Access to our REST API can improve your position in the market especially if:

  • You own e-commerce sites/marketplaces that buy & sell cards – If you have your own shop, site or market for people who collect cards, this solution can boost your traffic and sales.

  • You are planning to design and publish your own collector app and need an all-in-one API for the recognition and grading of cards.

  • You want to manage, organize and add data to your own card collection.

Is My Data Safe?

Yes. First of all, we don’t save the analysed images. We don’t even have so much storage capacity to store each analysed image, photo, scan and screen you add to your collection. Once our system processes an image, it removes it from the memory. Also, GDPR applies to all photos that enter our system. Read more in our FAQs.

How Fast is the System, Can I Connect it to a Scanner?

The system can identify one card scan in one second. You can connect it to any card scanner available in the market. The scanning outputs the cards into the folders, to which you can apply a script for card identification.

Sports Cards Recognition Apps You Can Build With Our API

Here are a few ideas for apps that you can build with our Sport Card Identifier and REST API:

  • Automatic card scanning system – create a simple script that will be connected to our API and your scanners like Fujitsu fi-8170. The system will be able to document your cards with incredible speed. Several of our customers are already organizing their collections of TCGs (like Magic The Gathering or Pokémon) and adding new cards on the go.

  • Price checking app or portfolio analysis – create your phone app alternative to Ludex or CollX. Start documenting the cards by taking pictures and grading your trading card collection. Our system can provide card IDs, pre-grade cards, and search them in an online marketplace. Easily connect with other collectors, purchase & sell the cards. Test our system’s ability to provide URLs to marketplaces here.

  • Analysing eBay submission – would you like to know what your card’s worth and how many are currently available in the market? For how much was the card sold in the past? Track the price of the card over time? Or what is the card population? With our technology, you can build a system that can analyse it.

AI for Trading Cards and Collectors

So this is our latest narrow AI service for the collector community. It is quite easy to integrate it into any system. You can use it for automatic documentation of your collection or simply to list your cards on online markets.

For more information, contact us via chat or contact page, and we can schedule a call with you and talk about the technical and business details. If you want to go straight and implement it, take look at our developer’s API documentation and don’t hesitate to ask for guidance anytime.

Right now we are also working on Comics identification (Comic book, magazines and manga). If you would like to hear more then just contact us via email or chat.

The post How to Identify Sports Cards With AI appeared first on Ximilar: Visual AI for Business.

]]>
AI Card Grading – Automate Sports Cards Pre-Grading https://www.ximilar.com/blog/ai-card-grading-automate-sports-cards-pre-grading/ Tue, 12 Sep 2023 11:20:08 +0000 https://www.ximilar.com/?p=14215 An in-depth look into AI card grading by Ximilar individually evaluating centering, edges, corners, and surface according to PSA or Beckett.

The post AI Card Grading – Automate Sports Cards Pre-Grading appeared first on Ximilar: Visual AI for Business.

]]>
In my last blog post, I wrote about our new artificial intelligence services for trading card identification. We created new API endpoints for both sports card recognition and slab reading, and similar solutions for trading card games (TCGs). Such solutions are great for analyzing and cataloguing a large card collection. I also briefly described our card grading endpoint, which was still in development at that time.

Today we are releasing three public API endpoints for evaluating card grade, centering and card condition with AI:

  • Card Grading – the most complex endpoint that evaluates corners, edges, surface and centering
  • Card Centering – computing just the centering of the card
  • Card Condition – simple API for getting condition of the card for marketplace (ebay) submission

In this blog post, I would like to get more in-depth about the AI card grading solution. How we built it, what are the pros and cons, how it is different from PSA grading or Beckett grading services, and how you can use it via REST API for your website or app.

AI Card Grading Services as API

With the latest advances in artificial intelligence, it is becoming increasingly common in our daily lives, and collectible cards are a field that doesn’t get left behind. A lot of startups are developing their own card grading, identification, scanning and documenting systems. Some of them were already successfully sold to big players like eBay or PSA. Just to mention a few:

To understand why card grading is so popular, let’s look at the standard grading process and how the industry works.

Standard Grading Process

Card grading has gained widespread popularity in the world of collectibles by offering a trusted way to assess trading cards to collectors. It’s a method that gives a fair and unbiased evaluation of a card’s condition, ensuring its authenticity and value. This appeals to both seasoned collectors who want to preserve their cards’ worth and newcomers looking to navigate the collectible market confidently.

The process involves sending cards to experts who carefully inspect them for qualities like centering, corners, edges, and surface. The standard grading process for trading cards involves these key steps:

  1. Submission: Collectors send their cards to grading companies.

  2. Authentication: Cards are checked for authenticity.

  3. Grading: Cards are assessed for condition and assigned a grade from 1 to 10 on a grading scale by an expert.

  4. Encapsulation: Graded cards are sealed in protective holders.

  5. Labelling & Certification: Labels with card details and grades are added. Cards’ information is recorded for verification. Special labels (such as fugitive ink, QR codes, or serial numbers) are introduced to prevent tampering.

  6. Return/Sale: Graded cards are returned to owners or sold for higher value.

Costs of Grading Services

The price for submitting cards and their grading depends on the company and the card. For example, the minimal grading price per card by PSA (Professional Sports Authenticator) is 15 USD, and it’s much more for more expensive cards.

You can pay hundreds of dollars if you have some rare baseball card from Topps or non-sports cards from Magic The Gathering or Yu-Gi-Oh! If your modern card collection contains hundreds of cards, the pricing can reach astronomical values. Of course, grading often makes the card’s value higher, depending on its condition and grade.

A typical collectible TCG card after the grading process. Some Pokémon cards can cost thousands of dollars, and the value is even higher after grading.

Pros And Cons of Classic Grading

Besides its costliness, classic grading has several other drawbacks:

  • It is a time-consuming offline process that is not particularly ideal for large-scale grading of whole collections.
  • Some grading companies would only grade cards with minimum submission value (declared value that is used for insurance).
  • Also, customers can usually submit only cards from popular series such as Pokémon, Magic The Gathering, Yu-Gi-Oh!, Sport Topps cards, and Sport Panini cards.

Of course, there are also advantages – like a physically sealed slab with a graded card, confirming its authenticity, and grading done by experts who can look at a card from all different angles and not just from a single image.

Nevertheless, there are a lot of steps involved in card grading, and the entire process takes a lot of time and effort. AI grading can help with the entire workflow, from authentication to grading and labelling.

Computer vision can easily and consistently spot printing defects, analyze corners and edges individually and compute centering in a matter of seconds and for a fraction of the price.

Introducing Online AI Card Grading REST API Service

Fast & Affordable AI Card Grading

Our intention is by no means to replace expert grading companies like PSA, BGS, SGC or CGC with AI-powered card grading. We would rather like it to be a faster, more consistent & cheaper alternative for anyone who needs bulk pre-grading of their collections.

One use case for our AI grading service is to use it to automate the estimation of the declared value of the card. A declared value is the estimated value of the collectible card after PSA has graded it (read PSA’s explanation here).

First, you will submit your card for grading by just sending the photo to our API. After obtaining a grade from our service, you can use our visual search system or card ID for a price guide. Actually, you will not only get the final grade of the card but a detailed grading breakdown (for edges, corners, centering, and surface). Then you can decide by yourself if you want to spend more money for physical grading or to sell it on eBay.

How Do We Train AI to Grade Cards?

To build an AI grading system powered by computer vision and machine learning techniques, we needed a lot of data that imitated real-world use cases (usually user-generated content such as smartphone pictures).

We manually destroyed some of our cards and intentionally used their tilted photos. We needed images imitating real-life pictures for annotation and training of machine learning models creating the AI card grading solution.

We spent a lot of time building our own dataset, including damaging our own cards. Our purpose from the beginning was to have a grader that would work both on sports cards and trading card games (TCGs), as well as images of different qualities and with different positioning of the cards.

AI Card Grader Consists of Several AI Models

Our card grading solution integrates a number of machine learning models trained on specific datasets. After you upload a photo of a card, the system needs to be able to correctly detect its position. It then identifies the type of the card: a sports card or a trading card game. Another recognition model identifies whether the picture shows the front or back of the card.

After localization & simple identification, the card gets an individual evaluation of its parts. We trained numerous models for individual grading of corners, edges, card surface, and centering, in accordance with grading standards such as PSA or Beckett.

Of course, different types of cards require a different approach, which is why, for example, we have two different models for corners. While sports cards should have sharp corners, TCG cards are typically more rounded.

From the individual grades, we compute a final grade with condition evaluation. Another model is identifying autographed cards. The cards with autographs are generally more valuable.

AI card grading of individual parts of the back of a sports card.

The big advantage is that the output of the card grading is easy to visualize. That is why we also provide a simple image with the report for each graded card. There you can see a detailed grading breakdown for every part of the card.

Limitations of AI and Machine Learning in Card Grading

Of course, both humans and AI can make mistakes. There are some limitations of the system. Estimating card grades from the images requires relatively high-resolution images, with good lighting conditions and with low post-processing.

As a matter of fact, a lot of modern cameras in smartphones are currently not very good at close-up photos. Their sensors have gotten bigger over the years, and their AI is upscaling the photos. This makes them artificially sharp with cartoon-like effects. This can of course corrupt the overall results. However, as I previously mentioned, that is why we train the models on real-life images and gradually improve their performance.

Let’s Get Some Cards Graded Via Our Online API

Modern Basketball Card

We can test our AI grader via Ximilar App. For this purpose, I chose one of the classic basketball cards of Michael Jordan. BGS (Beckett) gave this card a grade of 6 (EX-MT).

Our online grading system assigned this card a final grade of 6.5. The centering is quite off, so the system graded it 6/10. The grading is still not perfect, as it misses the surface by quite a large margin. However, the final grade is quite close to the one received by Beckett.

AI card grading and grade breakdown by Ximilar demonstrated on a classic basketball card with Michael Jordan.

In the breakdown image, you can see how the system evaluated individual parts of the card. The lines are drawn on the image, so you can see the details of individual grades for corners and edges. We hope that this brings more transparency to the algorithmic grading.

Vintage Baseball Card

Now let’s take a look at an image of a vintage sports card without an autograph. As an example, I chose the baseball card with Ed Mathews.

The final grade that the card receives is 6.0. The average corner value assigned by the system is 4.0 and edges are 7.0. The grade for the surface is 5.5 and the centering is 7.0 (left/right is 36/65 and top/bottom is 38/62).

AI card grading and its visualization by Ximilar with localization and centering.

We can take a look at the corners and think whether a professional grader would assign the same values. I personally think that the grade is reasonable. However, getting grades from a single image is hard. We’re also not trying to make the values precise up to decimals (e.g., 4.12453 for the upper left corner). We want this to be an affordable soft pre-grading solution.

Card corners are one of the reasons why pictures used for AI card grading should have as high resolution as possible.

Card corners are a bit blurry, so ideally, we would like to have a sharper image. However, we can see that the corners are not in the range of 7–10 grades but rather lower (4-6).

How Do We Compute the Final Grade?

We compute the final grade for corners and edges simply as an average of the individual values. We trained the centering grader according to the Beckett grading scale. It is in our opinion much better (has higher demands) than PSA in this case. So to get 10 points for centering, you need to have a 50/50 ratio – on top/bottom and left/right.

The good thing is, that since we provide values for all parts of the card, you don’t need to use our final grades. You can actually create and use your own formula for computing the final grade.

Card Centering API with AI

Some of our customers would like to compute just the centering of the card. That is why we publish also endpoint for this. It will return you offsets from left, right and top and bottom borders of the card. The offsets are relative and also absolute so you can visualize it in your application. Each API response contains image with visualized centering as part of the output:

Centering on Pokemon trading card game (tcg)
Computed centering of the Pokemon card.

Lightweight Grading, alias Card Condition Assessment

For customers that want to submit cards to online marketplaces and need to know just the condition of the card like Near Mint, Lightly Played, Heavily Played or Damaged we offer an additional endpoint for getting rough condition of your card. Because this endpoint (/v2/condition) is much simpler and also significantly cheaper than our /v2/grade endpoint. It’s great for a massive amount of data and suitable for collector shops all over the world. The API endpoint can be called from your application or we can write your own script that is able to analyze images/cards from Fujitsu scanners (Fujitsu FI-8170). If you also want to have a card identification service, our visual search AI can identify the TCGs like Pokemon, Magic The Gathering or Yugioh! with more than 98% accuracy.

You can ask to return the condition in several different formats like TCGPlayer, Ebay or our own.

Identification of card condition via Ximilar REST API endpoint with AI.
Identification of card condition via Ximilar REST API endpoint with AI.

The more about /v2/condition endpoint can be found in our documentation.

How You Can Test Ximilar Card Grader?

To test our online card grader API, you will need to log into the Ximilar App, where it is currently available to users of all plans for testing purposes. We are also currently working on a public demo.

The system is not perfect, neither is the real human grader. It will take us some time to develop something that will be near perfect and very stable. But I believe that we are on the right track to make AI-powered solutions in the collectibles industry more accessible and cheaper.

To Sum Up

The AI card grader is just one of many solutions by Ximilar that the collector community can use. Make sure to check out our AI Recognition of Collectibles. It is a universal service for the automated detection and recognition of all kinds of collectible items.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

If you would like us to customize any solution for collectors, just contact us and we will get back to you. We created these solutions (Card Identification and Card Grading) to be the best publicly available AI tools for collectors.

The post AI Card Grading – Automate Sports Cards Pre-Grading appeared first on Ximilar: Visual AI for Business.

]]>
Build Your Own Trading Card Game Identifier With Our API https://www.ximilar.com/blog/build-your-own-trading-card-game-identifier-with-our-api/ Thu, 27 Jul 2023 15:56:16 +0000 https://www.ximilar.com/?p=14016 Provide your community of collectors with AI-powered trading card game identifier. Connect via API and automate your image processing.

The post Build Your Own Trading Card Game Identifier With Our API appeared first on Ximilar: Visual AI for Business.

]]>
In one of my previous blog posts, I wrote about how we built a visual search engine for trading cards such as Pokémon TCG, Magic The Gathering or sports cards. This customized visual search engine is very precise, but it’s suitable mainly for collector shops & websites that already have their own collections of photos or cards that can be matched to the pictures uploaded by players.

However, as the world of trading card games expands, collectors increasingly require a versatile trading card game identifier. This tool should swiftly recognize various collectible cards, irrespective of your private collection or database. We accepted this challenge and built a Trading Card Game Identifier (Card ID). In this article, I will describe how it works, and how you can use it for your own App or website. We will also take a brief look at other additions to our Collectibles Recognition: OCR & grading system for both TCGs and sports.

Trading Card Games Identifier

What is the Card Identifier?

Card Identifier is an AI-powered tool by Ximilar able to recognize trading game cards in any image format and provide you with their attributes, such as the name, exact set, series, codes, number, or year of release. It also provides attributes such as information on whether the card is holo (foil-treated) or what alphabet or language it uses.

This solution is an extension of our core service AI Recognition of Collectibles (which does the basic image recognition of all collectible items) and expands its functionalities by detailed identification of specific trading games.

Card ID works independently of keywords and metadata. As a matter of fact, you can use it to generate keywords. You can save the output in JSON or use it for searching and filtering items on your webpage.

The attributes of cards, such as their name, date of release and set, are also typically used to find the trading card’s average price on marketplaces such as TCGPlayer or eBay. That is why for some cards, we can provide links to these sites right away.

There are several use-cases that you can use our card identifier, here are few of them:

  • you can connect your card scanner like Fujitsu (fi-8170) and create an system for documenting & digitalising your card collectors inventory, save thousands of hours with AI analysis
  • you can build a smartphone app that is able to identify a card from photo and get average price on ebay or tcgplayer
  • you can create your own marketplace website for card reselling & listing. Our technology will help with card identification of incoming submissions.

Because our solutions are powered by computer vision, you can upload photos of as many cards as you want, with or without sleeves, under different lighting and conditions.

Which Games Can the Trading Card Game Identifier Recognize?

Pokémon TCG

The Pokémon Trading Card Game is one of the most popular trading games. Fans of all generations and nationalities have been playing Pokémon TCG ever since its release in 1998. Our identifier recognizes Pokémon cards in both English & Japanese and provides their attributes.

Pokémon TCG (source: dicebreaker.com, rights: The Pokémon Company International, Inc.)

Magic The Gathering

MGT is a highly popular game. As of 2023, over 100 MTG sets have been released, with their numbers continually rising, making it increasingly challenging to keep pace with all the sets and new cards. Our identifier provides all basic information about the Magic The Gathering card in an uploaded photo, and we keep adding new attributes.

Magic The Gathering TCG, The Lord of the Rings set with amazing artwork. (source: wargamer.com, rights: Hasbro)

Yu-Gi-Oh!

Yu-Gi-Oh! is an iconic trading card game based on an anime series. Since its 1999 release, Yu-Gi-Oh! has garnered a dedicated community of players and collectors. Recognized as a top-selling TCG in 2009 by Guinness World Records, with over 22 billion cards sold worldwide, the demand for an AI model to assist with card identification is understandable.

Yu-Gi-Oh! Trading Card Game is a perfect adept for AI recognition with its 22 billion sold cards. (source: konami.com, rights: Konami)

From MetaZoo to Lorcana

TCGs such as MetaZoo TCG, Flesh and Blood TCG, One Piece Card Game, or Lorcana TCG are all smaller or more recent games, but they are starting to be more and more popular both in English-speaking and Asian countries.

Lorcana Trading Card Game. (source: mousetcg.com, rights: Disney & Ravensburger)

Independent of card type, this endpoint will also provide information such as:

  • Side – front or back of the card.

  • Alphabet – such as Latin, Japanese, Korean, Chinese, and more.

  • Holo/Foil – whether the card has a holo effect (aluminium foil).

  • Autograph – this particular feature is common rather for baseball and other sports cards.

All this information is necessary to value trading cards properly. For instance, a Japanese card can have a different value than an English one, and a holo card can have a higher value than a regular one.

How Identifying Trading Card Games via API Works?

Connect to API

Once you register in Ximilar App, you will automatically get your own unique API token. You will need at least business pricing plan. Then you can access and use our solutions both via App & API:

  • In the App, Card ID is a part of the Collectibles Recognition service. So if you upload your images there, the trading cards in them will be automatically recognized and identified.

  • The REST API endpoint is simple to use and easy to integrate into your mobile app, website or card-sorting machines. If you’re new to deploying solutions via API, the API documentation is here to help you with the basic setup. You can also find a lot of helpful information in our Help Center.

  • For a lot of cards we are able to provide links to TCG Player or Cardmarket so you will know the price of analysed cards immediatelly.

To access the Card Identifier by Ximilar, use the endpoint /v2/tcg_id:

https://api.ximilar.com/collectibles/v2/tcg_id

We are always here to answer your questions through the contact form or live chat and can also do the setup for you.

Implement Trading Card Game Identifier in Your App

Imagine you are building an app or a site catering to Yu-Gi-Oh! fans and collectors. When a visitor uploads a picture of a new card, our AI Recognition of Collectibles instantly detects the card’s position and confirms it as a trading card. Thanks to its object detection & image recognition capabilities, users can upload pictures containing multiple cards.

Recognition of Yu-Gi-Oh! playing card with Ximilar API.
Recognition of Yu-Gi-Oh! playing card with Ximilar Trading Card Game Identifier.

Subsequently, the Card ID provides the card’s attributes Name, Full Name, Set, Set Code, Card Number, Rarity and Year. This happens independently of your portfolio (collection) or database.

The identification of the record is fast (usually takes a second to process) and the results are provided in JSON. This way, the user can be provided with structured data on their trading card in a matter of seconds.

The identification works for almost all popular TCGs. And the good news is that our AI for card recognition is so powerful that we can extend it to other games. Let us know if you are missing any games.

New Solutions For Sports Cards

Sports Card Text Analysis With OCR & GPT

Because there are millions of sports cards, and it’s very hard to gather data for them, we have recently released another solution for text extraction from sports cards. The system is accessible via following endpoints:

https://api.ximilar.com/collectibles/v2/card_ocr_id
https://api.ximilar.com/collectibles/v2/sport_id

For the first endpoint. This technology is able to read all the texts in the photo with a card via Optical Character Recognition (OCR) and then provide information on the athlete via Large Language model (LLM) – GPT. This model is still in the works, however, it can help you with the automatization and labelling of the cards. If you have your own collection of sport’s cards then we can build you a precise, fast and affordable AI system for sports card identification.

The second endpoint actually uses a limited sports cards database for identification. You can try to play with both of them and choose the solution that works for you. If you have your own database of sports cards we can build a similar system just on your data.

You can read more about this solution in the article When OCR Meets ChatGPT AI in One API.

Read Graded Slab Labels With AI

Sports card grading is gaining popularity not only in the USA but also in Europe and Asia, as collectors recognize the value of their cards. Having rare foiled cards evaluated by esteemed companies like PSA or Beckett may be a good investment.

Online trading has become a prevalent trend, with eBay leading the pack as the go-to marketplace for collectibles. However, searching for the best deal among thousands of results for a specific query, like a “Michael Jordan Graded Card” can be incredibly time-consuming and challenging.

Reading graded slab label with OCR and AI.
Reading the Graded Slab Label and getting the certificate number with the grade from the picture.

Our endpoint slab_id reads the graded slabs and helps to automate the identification of promising cards:

https://api.ximilar.com/collectibles/v2/slab_id

It will read the slab and return attributes such as grade, name, grade company and certification number. You can use it to automatically find and filter items with certain grades or conditions (8/9/10, near mint, gem mint, and so on).

Pre-Grading of Sports Cards With AI

We also provide an alternative to the slab reader in case the uploaded card doesn’t have a grade yet. It is an AI-powered grader for websites that evaluate & sell sports cards. The system can grade whole cards as well as individual parts like corners, edges, or centering. It is accessible via endpoint grade (precise) or condition (lightweight and fast):

https://api.ximilar.com/card-grader/v2/grade
https://api.ximilar.com/card-grader/v2/condition
AI grading for sport card by Ximilar.
AI grading for sports cards by Ximilar.

Because identifying grades from a single picture cannot fully replace a professional grader, this endpoint serves mainly as a pre-grading solution. As I write this article, it is currently in beta testing. Nonetheless, it has already proven effective in specific scenarios, particularly with high-resolution pictures of sports cards without sleeves or slabs. This feature was highly requested by many of our customers. So we made it accessible to both Business and Professional plan users.

Solving this challenge is no simple task, and it is a long-term project for us. We are working hard both on gathering training data and improving the model architecture. It serves also as a research project, as we encounter a lot of new and not quite standard things and problems. I will write more about this service, technology, and development in a future blog post. So stay tuned!

Automation in Collectibles Industry Makes Sense

Here are a few reasons why I think the trading card industry is growing rapidly, and will use AI-powered automation more in the future:

Get a Solution Tailored to Your Business

All the services mentioned in this article are easy to combine with each other and with the rest of our solutions. One of the most popular solutions in the field of collectibles is a visual search and similar item recommendation. If you are aiming to have your own visual search engine, I suggest reading Pokémon TCG Search Engine: Use AI to Catch Them All and then contacting us.

The collector community’s feedback and thoughts serve as our primary motivation to develop tailor-made solutions for this amazing field. Contact us anytime and we can discuss your goals.

The post Build Your Own Trading Card Game Identifier With Our API appeared first on Ximilar: Visual AI for Business.

]]>
When OCR Meets ChatGPT AI in One API https://www.ximilar.com/blog/when-ocr-meets-chatgpt-ai-in-one-api/ Wed, 14 Jun 2023 09:38:27 +0000 https://www.ximilar.com/?p=13781 Introducing the fusion of optical character recognition (OCR) and conversational AI (ChatGPT) as an online REST API service.

The post When OCR Meets ChatGPT AI in One API appeared first on Ximilar: Visual AI for Business.

]]>
Imagine a world where machines not only have the ability to read text but also comprehend its meaning, just as effortlessly as we humans do. Over the past two years, we have witnessed extraordinary advancements in these areas, driven by two remarkable technologies: optical character recognition (OCR) and ChatGPT (generative pre-trained transformer). The combined potential of these technologies is enormous and offers assistance in numerous fields.

That is why we in Ximilar have recently developed an OCR system, integrated it with ChatGPT and made it available via API. It is one of the first publicly available services combining OCR software and the GPT model, supporting several alphabets and languages. In this article, I will provide an overview of what OCR and ChatGPT are, how they work, and – more importantly – how anyone can benefit from their combination.

What is Optical Character Recognition (OCR)?

OCR (Optical Character Recognition) is a technology that can quickly scan documents or images and extract text data from them. OCR engines are powered by artificial intelligence & machine learning. They use object detection, pattern recognition and feature extraction.

An OCR software can actually read not only printed but also handwritten text in an image or a document and provide you with extracted text information in a file format of your choosing.

How Optical Character Recognition Works?

When an OCR engine is provided with an image, it first detects the position of the text. Then, it uses AI model for reading individual characters to find out what the text in the scanned document says (text recognition).

This way, OCR tools can provide accurate information from virtually any kind of image file or document type. To name a few examples: PDF files containing camera images, scanned documents (e.g., legal documents), old printed documents such as historical newspapers, or even license plates.

A few examples of OCR: transcribing books to electronic form, reading invoices, passports, IDs and landmarks.
A few examples of OCR: transcribing books to electronic form, reading invoices, passports, IDs, and landmarks.

Most OCR tools are optimized for specific languages and alphabets. We can tune these tools in many ways. For example, to automate the reading of invoices, receipts, or contracts. They can also specialize in handwritten or printed paper documents.

The basic outputs from OCR tools are usually the extracted texts and their locations in the image. The data extracted with these tools can then serve various purposes, depending on your needs. From uploading the extracted text to simple Word documents to turning the recognized text to speech format for visually impaired users.

OCR programs can also do a layout analysis for transforming text into a table. Or they can integrate natural language processing (NLP) for further text analysis and extraction of named entities (NER). For example, identifying numbers, famous people or locations in the text, like ‘Albert Einstein’ or ‘Eiffel Tower’.

Technologies Related to OCR

You can also meet the term optical word recognition (OWR). This technology is not as widely used as the optical character recognition software. It involves the recognition and extraction of individual words or groups of words from an image.

There is also optical mark recognition (OMR). This technology can detect and interpret marks made on paper or other media. It can work together with OCR technology, for instance, to process and grade tests or surveys.

And last but not least, there is intelligent character recognition (ICR). It is a specific OCR optimised for the extraction of handwritten text from an image. All these advanced methods share some underlying principles.

What are GPT and ChatGPT?

Generative pre-trained transformer (GPT), is an AI text model that is able to generate textual outputs based on input (prompt). GPT models are large language models (LLMs) powered by deep learning and relying on neural networks. They are incredibly powerful tools and can do content creation (e.g., writing paragraphs of blog posts), proofreading and error fixing, explaining concepts & ideas, and much more.

The Impact of ChatGPT

ChatGPT introduced by OpenAI and Microsoft is an extension of the GPT model, which is further optimized for conversations. It has had a great impact on how we search, work with and process data.

GPT models are trained on huge amounts of textual data. So they have better knowledge than an average human being about many topics. In my case, ChatGPT has definitely better English writing & grammar skills than me. Here’s an example of ChatGPT explaining quantum computing:

ChatGPT model explaining quantum computing. [source: OpenAI]
ChatGPT model explaining quantum computing. [source: OpenAI]

It is no overstatement to say that the introduction of ChatGPT revolutionized data processing, analysis, search, and retrieval.

How Can OCR & GPT Be Combined For Smart Text Extraction

The combination of OCR with GPT models enables us to use this technology to its full potential. GPT can understand, analyze and edit textual inputs. That is why it is ideal for post-processing of the raw text data extracted from images with OCR technology. You can give the text to the GPT and ask simple questions such as “What are the items on the invoice and what is the invoice price?” and get an answer with the exact structure you need.

This was a very hard problem just a year ago, and a lot of companies were trying to build intelligent document-reading systems, investing millions of dollars in them. The large language models are really game changers and major time savers. It is great that they can be combined with other tools such as OCR and integrated into visual AI systems.

It can help us with many things, including extraction of essential information from images and putting them into text documents or JSON. And in the future, it can revolutionize search engines, and streamline automated text translation or entire workflows of document processing and archiving.

Examples of OCR Software & ChatGPT Working Together

So, now that we can combine computer vision and advanced natural language processing, let’s take a look at how we can use this technology to our advantage.

Reading, Processing and Mining Invoices From PDFs

One of the typical examples of OCR software is reading the data from invoices, receipts, or contracts from image-only PDFs (or other documents). Imagine a part of invoices and receipts your accounting department accepts are physical printed documents. You could scan the document, and instead of opening it in Adobe Acrobat and doing manual data entry (which is still a standard procedure in many accounting departments today), you would let the automated OCR system handle the rest.

Scanned documents can be automatically sent to the API from both computers and mobile phones. The visual AI needs only a few hundred milliseconds to process an image. Then you will get textual data with the desired structure in JSON or another format. You can easily integrate such technology into accounting systems and internal infrastructures to streamline invoice processing, payments or SKU numbers monitoring.

Receipt analysis via Ximilar OCR and OpenAI ChatGPT.
Receipt analysis via Ximilar OCR and OpenAI ChatGPT.

Trading Card Identifying & Reading Powered by AI

In recent years, the collector community for trading cards has grown significantly. This has been accompanied by the emergence of specialized collector websites, comparison platforms, and community forums. And with the increasing number of both cards and their collectors, there has been a parallel demand for automating the recognition and cataloguing collectibles from images.

Ximilar has been developing AI-powered solutions for some of the biggest collector websites on the market. And adding an OCR system was an ideal solution for data extraction from both cards and their graded slabs.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

We developed an OCR system that extracts all text characters from both the card and its slab in the image. Then GPT processes these texts and provides structured information. For instance, the name of the player, the card, its grade and name of grading company, or labels from PSA.

Extracting text from the trading card via OCR and then using GPT prompt to get relevant information.
Extracting text from the trading card via OCR and then using GPT prompt to get relevant information.

Needless to say, we are pretty big fans of collectible cards ourselves. So we’ve been enjoying working on AI not only for sports cards but also for trading card games. We recently developed several solutions tuned specifically for the most popular trading card games such as Pokémon, Magic the Gathering or YuGiOh! and have been adding new features and games constantly. Do you like the idea of trading card recognition automation? See how it works in our public demo.

How Can I Use the OCR & GPT API On My Images or PDFs?

Our OCR software is publicly available via an online REST API. This is how you can use it:

  1. Log into Ximilar App

    • Get your free API TOKEN to connect to API – Once you sign up to Ximilar App, you will get a free API token, which allows your authentication. The API documentation is here to help you with the basic setup. You can connect it with any programming language and any platform like iOS or Android. We provide a simple Python SDK for calling the API.

    • You can also try the service directly in the App under Computer Vision Platform.

  2. For simple text extraction from your image, call the endpoint read.

    https://api.ximilar.com/ocr/v2/read
  3. For text extraction from an image and its post-processing with GPT, use the endpoint read_gpt. To get the results in a deserved structure, you will need to specify the prompt query along with your input images in the API request, and the system will return the results immediately.

    https://api.ximilar.com/ocr/v2/read_gpt
  4. The output is JSON with an ‘_ocr’ field. This dictionary contains texts that represent a list of polygons that encapsulate detected words and sentences in images. The full_text field contains all strings concatenated together. The API is returning also the language name (“lang_name”) and language code (“lang”; ISO 639-1). Here is an example:

    {
    "_url": "__URL_PATH_TO_IMAGE__
    "_ocr": {
    "texts": [
    {
    "polygon": [[53.0,76.0],[116.0,76.0],[116.0,94.0],[53.0,94.0]],
    "text": "MICKEY MANTLE",
    "prob": 0.9978849291801453
    },
    ...
    ],
    "full_text": "MICKEY MANTLE 1st Base Yankees",
    "lang_name": "english",
    "lang_code": "en
    }
    }

    Our OCR engine supports several alphabets (Latin, Chinese, Korean, Japanese and Cyrillic) and languages (English, German, Chinese, …).

Integrate the Combination of OCR and ChatGPT In Your System

All our solutions, including the combination of OCR & GPT, are available via API. Therefore, they can be easily integrated into your system, website, app, or infrastructure.

Here are some examples of up-to-date solutions that can easily be built on our platform and automate your workflows:

  • Detection, recognition & text extraction system – You can let the users of your website or app upload images of collectibles and get relevant information about them immediately. Once they take an image of the item, our system detects its position (and can mark it with a bounding box). Then, it recognizes their features (e.g., name of the card, collectible coin or comic book), extracts texts with OCR and you will get text data for your website (e.g., in a table format).

  • Card grade reading system – If your users upload images of graded cards or other collectibles, our system can detect everything including the grades and labels on the slabs in a matter of milliseconds.

  • Comic book recognition & search engine – You can extract all texts from each image of a comic book and automatically match it to your database for cataloguing.

  • Giving your collection or database of collectibles order – Imagine you have a website featuring a rich collection of collectible items, getting images from various sources and comparing their prices. The metadata can be quite inconsistent amongst source websites, or be absent in the case of user-generated content. AI can recognize, match, find and extract information from images based purely on computer vision and independent of any kind of metadata.

Let’s Build Your Solution

If you would like to learn more about how you can automate the workflows in your company, I recommend browsing our page All Solutions, where we briefly explained each solution. You can also check out pages such as Visual AI for Collectibles, or contact us right away to discuss your unique use case. If you’d like to learn more about how we work on customer projects step by step, go to How it Works.

Ximilar’s computer vision platform enables you to develop AI-powered systems for image recognition, visual quality control, and more without knowledge of coding or machine learning. You can combine them as you wish and upgrade any of them anytime.

Don’t forget to visit the free public demo to see how the basic services work. Your custom solution can be assembled from many individual services. This modular structure enables us to upgrade or change any piece anytime, while you save your money and time.

The post When OCR Meets ChatGPT AI in One API appeared first on Ximilar: Visual AI for Business.

]]>
Predict Values From Images With Image Regression https://www.ximilar.com/blog/predict-values-from-images-with-image-regression/ Wed, 22 Mar 2023 15:03:45 +0000 https://www.ximilar.com/?p=12666 With image regression, you can assess the quality of samples, grade collectible items or rate & rank real estate photos.

The post Predict Values From Images With Image Regression appeared first on Ximilar: Visual AI for Business.

]]>
We are excited to introduce the latest addition to Ximilar’s Computer Vision Platform. Our platform is a great tool for building image classification systems, and now it also includes image regression models. They enable you to extract values from images with accuracy and efficiency and save your labor costs.

Let’s take a look at what image regression is and how it works, including examples of the most common applications. More importantly, I will tell you how you can train your own regression system on a no-code computer vision platform. As more and more customers seek to extract information from pictures, this new feature is sure to provide Ximilar’s customers with the tools they need to stay ahead of the curve in today’s highly competitive AI-driven market.

What is the Difference Between Image Categorization and Regression?

Image recognition models are ideal for the recognition of images or objects in them, their categorization and tagging (labelling). Let’s say you want to recognize different types of car tyres or their patterns. In this case, categorization and tagging models would be suitable for assigning discrete features to images. However, if you want to predict any continuous value from a certain range, such as the level of tyre wear, image regression is the preferred approach.

Image regression is an advanced machine-learning technique that can predict continuous values within a specific range. Whenever you need to rate or evaluate a collection of images, an image regression system can be incredibly useful.

For instance, you can define a range of values, such as 0 to 5, where 0 is the worst and 5 is the best, and train an image regression task to predict the appropriate rating for given products. Such predictive systems are ideal for assigning values to several specific features within images. In this case, the system would provide you with highly accurate insights into the wear and tear of a particular tyre.

Predicting the level of tires worn out from the image is a use case for an image regression task, while a categorization task can recognize the pattern of the tire.
Predicting the level of tires worn out from the image is a use case for an image regression task, while a categorization task can recognize the pattern of the tyre.

How to Train Image Regression With a Computer Vision Platform?

Simply log in to Ximilar App and go to Categorization & Tagging. Upload your training pictures and under Tasks, click on Create a new task and create a Regression task.

Creating an image regression task in Ximilar App.

You can train regression tasks and test them via the same front end or with API. You can develop an AI prediction task for your photos with just a few clicks, without any coding or any knowledge of machine learning.

This way, you can create an automatic grading system able to analyze an image and provide a numerical output in the defined range.

Use the Same Training Data For All Your Image Classification Tasks

Both image recognition and image regression methods fall under the image classification techniques. That is why the whole process of working with regression is very similar to categorization & tagging models.

Working with image regression model on Ximilar computer vision platform.

Both technologies can work with the same datasets (training images), and inputs of various image sizes and types. In both cases, you can simply upload your data set to the platform, and after creating a task, label the pictures with appropriate continuous values, and then click on the Train button.

Apart from a machine learning platform, we offer a number of AI solutions that are field-tested and ready to use. Check out our public demos to see them in action.

If you would like to build your first image classification system on a no-code machine learning platform, I recommend checking out the article How to Build Your Own Image Recognition API. We defined the basic terms in the article How to Train Custom Image Classifier in 5 Minutes. We also made a basic video tutorial:

Tutorial: train your own image recognition model with Ximilar platform.

Neural Network: The Technology Behind Predicting Range Values on Images

The most simple technique for predicting float values is linear regression. This can be further extended to polynomial regression. These two statistical techniques are working great on tabular input data. However, when it comes to predicting numbers from images, a more advanced approach is required. That’s where neural networks come in. Mathematically said, neural network “f” can be trained to predict value “y” on picture “x”, or “y = f(x)”.

Neural networks can be thought of as approximations of functions that we aim to identify through the optimization on training data. The most commonly used NNs for image-based predictions are Convolutional Neural Networks (CNNs), visual transformers (VisT), or a combination of both. These powerful tools analyze pictures pixel by pixel, and learn relevant features and patterns that are essential for solving the problem at hand.

CNNs are particularly effective in picture analysis tasks. They are able to detect features at different spatial scales and orientations. Meanwhile, VisTs have been gaining popularity due to their ability to learn visual features without being constrained by spatial invariance. When used together, these techniques can provide a comprehensive approach to image-based predictions. We can use them to extract the most relevant information from images.

What Are the Most Common Applications of Value Regression From Images?

Estimating Age From Photos

Probably the most widely known use case of image regression by the public is age prediction. You can come across them on social media platforms and mobile apps, such as Facebook, Instagram, Snapchat, or Face App. They apply deep learning algorithms to predict a user’s age based on their facial features and other details.

While image recognition provides information on the object or person in the image, the regression system tells us a specific value – in this case, the person's age.
While image recognition provides information on the object or person in the image, the regression system tells us a specific value – in this case, the person’s age.

Needless to say, these plugins are not always correct and can sometimes produce biased results. Despite this limitation, various image regression models are gaining popularity on various social sites and in apps.

Ximilar already provides a face-detection solution. Models such as age prediction can be easily trained and deployed on our platform and integrated into your system.

Value Prediction and Rating of Real Estate Photos

Pictures play an essential part on real estate sites. When people are looking for a new home or investment, they are navigating through the feed mainly by visual features. With image regression, you are able to predict the state, quality, price, and overall rating of real estate from photos. This can help with both searching and evaluating real estate.

Predicting rating, and price (regression) for household images with image regression.
Predicting rating, and price (regression) for household images with image regression.

Custom recognition models are also great for the recognition & categorization of the features present in real estate photos. For example, you can determine whether a room is furnished, what type of room it is, and categorize the windows and floors based on their design.

Additionally, a regression can determine the quality or state of floors or walls, as well as rank the overall visual aesthetics of households. You can store all of this information in your database. Your users can then use such data to search for real estate that meets specific criteria.

Image classification systems such as image recognition and value regression are ideal for real estate ranking. Your visitors can search the database with the extracted data.
Image classification systems such as image recognition and value regression are ideal for real estate ranking. Your visitors can search the database with the extracted data.

Determining the Degree of Wear and Tear With AI

Visual AI is increasingly being used to estimate the condition of products in photos. While recognition systems can detect individual tears and surface defects, regression systems can estimate the overall degree of wear and tear of things.

A good example of an industry that has seen significant adoption of such technology is the insurance industry. For example, startups-like Lemonade Inc, or Root use AI when paying the insurance.

With custom image recognition and regression methods, it is now possible to automate the process of insurance claims. For instance, a visual AI system can indicate the seriousness of damage to cars after accidents or assess the wear and tear of various parts such as suspension, tires, or gearboxes. The same goes with other types of insurance, including households, appliances, or even collectible & antique items.

Our platform is commonly utilized to develop recognition and detection systems for visual quality control & defect detection. Read more in the article Visual AI Takes Quality Control to a New Level.

Automatic Grading of Antique & Collectible Items Such as Sports Cards

Apart from car insurance and damage inspection, recognition and regression are great for all types of grading and sorting systems, for instance on price comparators and marketplaces of collectible and antique items. Deep learning is ideal for the automatic visual grading of collector items such as comic books and trading cards.

By leveraging visual AI technology, companies can streamline their processes, reduce manual labor significantly, cut costs, and enhance the accuracy and reliability of their assessments, leading to greater customer satisfaction.

Automatic Recognition of Collectibles

Ximilar built an AI system for the detection, recognition and grading of collectibles. Check it out!

Food Quality Estimation With AI

Biotech, Med Tech, and Industry 4.0 also have a lot of applications for regression models. For example, they can estimate the approximate level of fruit & vegetable ripeness or freshness from a simple camera image.

The grading of vegetables by an image regression model.
The grading of vegetables by an image regression model.

For instance, this Japanese farmer is using deep learning for cucumber quality checks. Looking for quality control or estimation of size and other parameters of olives, fruits, or meat? You can easily create a system tailored to these use cases without coding on the Ximilar platform.

Build Custom Evaluation & Grading Systems With Ximilar

Ximilar provides a no-code visual AI platform accessible via App & API. You can log in and train your own visual AI without the need to know how to code or have expertise in deep learning techniques. It will take you just a few minutes to build a powerful AI model. Don’t hesitate to test it for free and let us know what you think!

Our developers and annotators are also able to build custom recognition and regression systems from scratch. We can help you with the training of the custom task and then with the deployment in production. Both custom and ready-to-use solutions can be used via API or even deployed offline.

The post Predict Values From Images With Image Regression appeared first on Ximilar: Visual AI for Business.

]]>
Image Upscaler: API for Super-Resolution Image Enhancing https://www.ximilar.com/blog/image-upscaler-api-for-super-resolution-image-enhancing/ Tue, 31 May 2022 13:04:21 +0000 https://www.ximilar.com/?p=7487 Enhance your images' resolution without losing quality with a powerful Image Upscaler based on visual AI.

The post Image Upscaler: API for Super-Resolution Image Enhancing appeared first on Ximilar: Visual AI for Business.

]]>
Websites based on visual content from various sources often struggle with the low resolution of their images. Ximilar created Image Upscaler – a new image upscaling tool, based on a smart enhancing algorithm, which is able to upscale the image up to 8x. It is one of the most affordable solutions on the market, which can be both integrated into image processing systems and used separately.

When Visual Content Matters

About 90 % of information transmitted to the human brain is visual. There is no doubt that humans are fixated on visual information, with images and videos being the most popular content on the internet. According to Internet Live Stats, every second, more than 1 000 pictures are uploaded to Instagram and almost 100k videos are played on YouTube.

To increase the traffic & conversions, you need to make your site and content as visually appealing as possible.

The more people love using and consuming visual content online, the more important visual merchandising gets. It is clear that if you want to increase the traffic and conversions on your website, you need to make your site and content as visually appealing as possible.

How Does Image Upscaling Work?

Image upscaling, or image enhancement, is a process in which images are enriched with more pixels to get a higher resolution. During this process, the image is divided into segments which are upscaled separately and then put back together. So, for example, during the 4x upscaling, the 64 x 64px segments turn into 256 x 256px.

The pixel multiplication is enabled by AI, using the techniques of deep learning and computer vision. During the training, the neural network learns how to divide each pixel into multiple pixels based on its surroundings. Some image enhancing techniques also involve generative modelling, which generates new information to make the modified image look convincing.

A Few Image Upscaling Examples

Image upscaling: photo of lake and mountains.

Super-resolution upscaling makes the edges and colour transitions smoother. When you find a perfect stock photo, you can increase the resolution by adding 2x, 4x, or 8x more pixels to the image.

Upscal
Image upscaling: product photo of watch.

Sometimes, the smallest changes to the image make the biggest difference. The upscaled images provide the feeling of greater depth and more details, and leave a better impression.

Image upscaling: photo of a fashion model.

Where is The Image Enhancement the Most Needed?

Stock Photo Databases

The competition in the stock image market is enormous. Nowadays, users of paid stock photo databases expect combined visual searchsearch by tags, advanced filtering, high-quality photos, or even an editing interface.

When you implement an upscaling solution, you can level up your customer experience, ensure that images coming from thousands of authors will maintain a certain quality, or even make it a part of your own image editor.

Real Estate Photos

Real estate properties with great image galleries have a significantly greater chance of catching the attention of visitors and finding buyers faster.

If you have a collection of real estate images, you can use Custom Image Recognition to automatically choose the best pictures to be displayed, and then use the Image Upscaler to increase the resolution of images. To do so, you will need to train your categorization task first and then combine it with Image Upscaler via Flows.

Enhance image resolution by 2, 4 or 8 times for real estate images.

E-Commerce

Online sellers usually receive their product pictures from various sources. That is why upscaler is a useful visual merchandising and product page optimization tool. You can add the image enhancement into your automatic image processing system to get a unified resolution for the product listing as well as the highest quality images for the product page.

This can also be done with Flows: you can create a task, which will choose all low-quality images and send them to an upscaling task. You can also combine this service with background removal or add it into a more complex Flow with tagging tasks.

Want to know more? Read how our AI helps online businesses.

Gaming

Upscaling technology is getting used in more and more industries, but the first super-resolution AI models were used in the gaming industry. For example, Xbox or your latest Nvidia GPU card can artificially increase the resolution of the game. Using image enhancement in games has several advantages:

  • The rendering mechanism is used for creating low-resolution scenes and then a fast AI model is used to improve the resolution
  • Older games, that are natively optimized for lower resolution, can be eventually played with improved graphics in a higher resolution

Generated Art

Generated images, artworks, and concept art are becoming increasingly popular with technologies such as Dall-E 2 and Midjourney. We tried our Generative (GAN) model on these photos and the results are amazing! You can get beautiful printable art in 4k or 8k resolution with our AI via API. What a time to be alive!

The Technology Behind Image Upscaler

Ximilar currently provides two image upscaling solutions: the Classic Image Upscaler and GAN Upscaler.

Classic Image Upscaler

The Classic Image Upscaler is based solely on pixel multiplication. It multiplies each pixel in an image 2–8 times to achieve a higher resolution without modifications to the image. The image upscaled by a classic upscaler is as true to the original image as possible. It is ideal if you only need to upscale your images without adding anything new. Typical examples are CCTV footage or images with delicate patterns and details, that should remain unchanged.

Ximilar is using the latest architecture of convolutional neural networks trained on high and low-quality images. The model outperforms the bicubic interpolation used in programs like Photoshop by several times.

Post-Processing Methods

The post-processing API can be used to remove unnecessary artifacts and noise from images (Artifact removal), focus on small details (High fidelity), or significantly smooth the entire image (Ironed out).

Different modes of the image upscaling smart algorithm to fine-tune details on the image.
Different modes of the Image Upscaler smart algorithm to fine-tune details on the image.

Each of these post-processing methods is good for different types of images. For example, smoothing is ideal for vector graphics or designs. Artifact removal is best for real-life images, e.g. family photos. High fidelity can be used in professional graphics.

GAN Image Upscaler

GAN Image Upscaler is a bit more advanced, and in fact, recommended upscaling technology, especially for commercial content. This upscaler analyzes the colors, edges, corners, light and shade in the original image and enhances its resolution by generating new pixels, that are as relevant pixels as possible to make the resulting images natural-looking. It makes stock photos and product images look more appealing.

How to Upscale an Image Using the Image Upscaler?

A lot of smartphone apps use upscaling models to improve user photos. Brands such as iPhone or Huawei include enhancing models in their software. These models are hidden from the eyes of the user and participate in making photos. Our super-resolution model can be used anywhere simply by calling the Rest API.

Synchronous and Asynchronous API Requests

A basic upscaling task uses synchronous request, meaning you upload an image, wait for it to be processed and eventually get the upscaled result. Synchronous API requests are typically used in public upscaling tools and are currently set for testing purposes in our App. They can however be ineffective for companies that upscale large volumes of data at once and want to keep track of the progress.

That is why we also provide and recommend an API endpoint for asynchronous requests. The difference is that you send multiple upscaling requests (specified by id), they are queued and then processed one by one. You can also send other requests to track the progress of the job. We especially recommend this approach if you need to upscale whole databases, e.g. e-shops with large product photo collections or stock photo databases. You can also use Webhook and get a notification once the job is done.

The model is accessible via the following async API endpoints:

https://api.ximilar.com/account/v2/request

You can also test upscaling of images in Ximilar App (with the option to use the latest GAN model).

Image Upscaler at Stockphotos.com

The Image Upscaler by Ximilar is used at one of the best-known stock photo banks, StockPhotos. The service is free of charge for testing purposes.

Would you like to implement an AI image upscaler into your own app or system? Feel free to contact us anytime.

The post Image Upscaler: API for Super-Resolution Image Enhancing appeared first on Ximilar: Visual AI for Business.

]]>
Explainable AI: What is My Image Recognition Model Looking At? https://www.ximilar.com/blog/what-is-your-image-recognition-looking-at/ Tue, 07 Dec 2021 14:16:20 +0000 https://www.ximilar.com/?p=3185 With the AI Explainability in Ximilar App, you can see which parts of your images are the most important to your image recognition models.

The post Explainable AI: What is My Image Recognition Model Looking At? appeared first on Ximilar: Visual AI for Business.

]]>
There are many challenges in machine learning, and developing a good model is one of them. Even though neural networks are very powerful, they have a great weakness. Their complexity makes it hard to understand how they reach their decisions. This might be a problem when you want to move from development to production, and it might eventually cause your whole project to fail. But how can you measure the success of a machine learning model? The answer is not easy. In our opinion, the model must excel in a production environment and should work reliably in both common and uncommon situations.

However, even when the results in production are good, there are areas, where we can’t simply accept black box decisions without being sure, how the AI made them. These areas are typically medicine and biotech or any other field where there is no place for errors. We need to make sure that both output and the way our model reached its decision make sense – we need explainable AI. For these reasons, we introduced a new feature to our Image Recognition service called Explain.

Training Image Recognition

Image Recognition is a Visual AI service enabling you to train custom models to recognize images or objects in them. In Ximilar App, you can use Categorization & Tagging and Object Detection, which can be combined with Flows. For example, the first task will detect all the human models in the image and the categorization & tagging tasks will categorize and tag their clothes and accessories.

Image recognition is a very powerful technology, bringing automation to many industries. It requires well-trained models, and, in the case of object detection, precise data annotation. If you are not familiar with using image recognition on our platform, please try to set up your own classifier first.

These resources should be helpful in the beginning:

From model-centric to data-centric with explainable AI

Explaining which areas are important for the leaf disease recognition model when predicting a label called “canker”.

When you want a model which performs great in a production setting and has high accuracy, you need to focus on your training data first. Consistency of labelling, cleaning datasets from unnecessary samples/labels, and adding feature-rich samples that are missing is much more important than the newest architecture of the neural network. Andrew Ng, an entrepreneur and professor at Stanford, is also promoting this approach to building machine learning models.

The Explain feature in our App tells you:

  • which parts of images (features and pixels) are important for predicting specific labels
  • for which images the model will probably predict the wrong results
  • which samples should be added to your training dataset to improve performance

Simple Example: T-shirt or Not?

Let’s look at this simple example of how explainable AI can be useful. Let’s say we have a task containing two categories – t-shirts and shoes. For a start, we have 20 images in each category. It is definitely not enough for production, but it is enough if you want to experiment and learn.

Our neural network trained with Ximilar SaaS platform has two labels: shoes and t-shirt.
This neural network has two labels: shoes and t-shirt.

After playing with the advanced options and short training, the result seems really promising:

Using Explain on a Training Image

But did the model actually learn what we wanted? To check, what the neural network find important when categorizing our images, we will apply two different methods with the tool Explain:

  • Grad-CAM (first published in 2016) – this method is very fast, but the results are not very precise
  • Blur Integrated Gradients (published in 2020) smoothed with SmoothGrad – this method provides much more details, but at the cost of computational time
Grad-Cam result of explain feature. Model is looking mostly at the head/face.
Grad-Cam result of Explain feature. As you can see, the model is looking mostly at the head/face.
Blur-Integrated Gradients results, the most important features are head/face, same as what grad-cam is telling us.
Blur-Integrated Gradients results, the most important features are head/face, similar to what grad-cam is telling us.

In this case, both methods clearly demonstrate the problem of our model. The focus is not on the t-shirt itself, but on the head of the person wearing it. In the end, it was easier for the learning algorithm and the neural network to distinguish between the two categories using this feature instead of focusing on the t-shirt. If we look at the training data for label t-shirt, we can see that all pictures include a person with a visible face.

Data for T-shirt label for Image recognition task for Fashion Recognition.
Data for T-shirt label for the image recognition task. This small dataset contains only photos with visible faces, which can be a problem.

Explainability After Adding New Data

The solution might be adding more varied training data and introducing images without a person. Generally, it’s a good approach to start with a small dataset and over time increase it to a bigger one. Adding visually broad images helps model with overfitting on wrong features. So we added more photos to the label and trained the model again. Let’s see what the results look like with our new version of the model:

After retraining the model on new data, we can see the improvement for what features is neural network looking for.
After retraining the model on new data, we can see the improvement for what features the neural network looking for.

The Grad-CAM result on the left is not very convincing in this case. The image on the right shows the result of Blur Integrated Gradients. Here you can see, how the focus moved from the head to the t-shirt. It seems like the head still plays some part, but there is much less focus on it.

Both methods for explainable AI have their drawbacks, and sometimes we have to try more pictures to get a better understanding of model behaviour. We also need to mention one important point. Due to the way the algorithm works, it tends to prefer edges, which is clearly visible in the examples.

Summary

The Explainability and Interpretability of Neural Networks is a big research topic, and we are looking forward to adopting and integrating more techniques into our SaaS AI solution. AI Explainability that we showed you is only one tool amongst many towards data-centric AI.

If you have any troubles, do not hesitate to contact us. The machine learning specialists of Ximilar have vast experience with different kinds of problems, and are always happy to help you with yours.

The post Explainable AI: What is My Image Recognition Model Looking At? appeared first on Ximilar: Visual AI for Business.

]]>